Role of solvation dynamics in excited state proton transfer of 1-naphthol in nanoscopic water clusters formed in a hydrophobic solvent.

نویسندگان

  • Surajit Rakshit
  • Ranajay Saha
  • Pramod Kumar Verma
  • Samir Kumar Pal
چکیده

Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters

Electron solvation dynamics in photoexcited anion clusters of I-(D2O)n=4-6 and I-(H2O)4-6 were probed by using femtosecond photoelectron spectroscopy (FPES). An ultrafast pump pulse excited the anion to the cluster analog of the charge-transfer-to-solvent state seen for I- in aqueous solution. Evolution of this state was monitored by time-resolved photoelectron spectroscopy using an ultrafast p...

متن کامل

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Observation of excited state proton transfer reactions in 2-phenylphenol and 2-phenyl-1-naphthol and formation of quinone methide species.

The excited state intramolecular proton transfer (ESIPT) reactions from a phenol (naphthol) to a carbon atom in the adjacent aromatic ring of 2-phenylphenol (1) and 2-phenyl-1-naphthol (4) are prototypical examples of intramolecular proton transfer not mediated by solvent molecules. Femtosecond time-resolved transient absorption (fs-TA) studies are conducted for the first time to directly probe...

متن کامل

Dynamics of electron solvation in molecular clusters.

Solvated electrons, and hydrated electrons in particular, are important species in condensed phase chemistry, physics, and biology. Many studies have examined the formation mechanism, reactivity, spectroscopy, and dynamics of electrons in aqueous solution and other solvents, leading to a fundamental understanding of the electron-solvent interaction. However, key aspects of solvated electrons re...

متن کامل

Theoretical study on the size dependence of excited state proton transfer in 1-naphthol-ammonia clusters.

The geometries and energetics of the ground and lower-lying singlet excited states S0, La, and Lb of 1-naphthol (NpOH)-(NH3)n (n = 0-5) clusters have been computed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. Cluster size dependence of the excited state proton transfer (ESPT) reaction was investigated by the vertical transitions from the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemistry and photobiology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2012